

GENERALIZED ALGORITHM TO THE EXTRACTION OF HEIGHT RIDGES IN RIEMANNIAN GEOMETRY

M. A. SOLIMAN¹, NASSAR H. ABDEL-ALL², R. A. HUSSEIN³ & WADAH M. EL-NINI⁴

^{1,3,4}Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt ²Department of Mathematics, Faculty of Science and Arts, Qassim University, Oniza, Saudi Arabia

ABSTRACT

Surface creases (ridges and ravines) provide us with important information about the shapes of objects and can be intuitively defined as curves on a surface along which the surface bends sharply. These features are a task in many areas such as computer vision and image processing. Even though a significant amount of research has been directed to defining and extracting ridges and ravines some fundamental challenges remain.

The authors in [6, 21] have recently shown the attraction of ridge and height ridge as a generalized local maximum in 2-D Riemannian Geometry, and have presented a new algorithm to extract height ridges from 2-D images. Here, we are concerned also with attraction ridge and height ridge definitions as a generalized local maximum, but in n-D Riemannian Geometry, and then we have a new algorithm to extract height ridges from 3-D and n-D images. The results in this paper considered as a continuation to [1, 2, 3].

KEYWORDS: Ridges, Height Ridges, Ridge Directions